Çankaya University
Department of Mathematics
2019-2020 Fall Semester

MATH 255 - Vector Calculus and Linear Algebra Final Examination

1) The following set of vectors S span \mathbb{R}^{4} but S is not a basis for \mathbb{R}^{4} :

$$
S=\left\{\left[\begin{array}{r}
1 \\
2 \\
0 \\
-1
\end{array}\right],\left[\begin{array}{r}
0 \\
-1 \\
1 \\
4
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1 \\
3
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
3 \\
1 \\
2
\end{array}\right],\left[\begin{array}{l}
2 \\
2 \\
1 \\
1
\end{array}\right]\right\}
$$

Remove some vectors from S such that remaining set is a basis for \mathbb{R}^{4}.
2) Find a basis for nullspace, rank and nullity of the matrix $A=\left[\begin{array}{rrrrr}1 & 3 & 0 & -1 & 0 \\ 3 & 9 & 1 & -2 & -2 \\ 0 & 0 & 1 & 1 & -2 \\ 4 & 12 & 2 & -2 & -4\end{array}\right]$.
3) Use Gram-Schmidt orthogonalization process to obtain an orthonormal basis for $\operatorname{span}(S)$:

$$
S=\left\{\left[\begin{array}{l}
1 \\
0 \\
0 \\
2
\end{array}\right],\left[\begin{array}{r}
-1 \\
4 \\
2 \\
3
\end{array}\right],\left[\begin{array}{r}
2 \\
10 \\
5 \\
4
\end{array}\right]\right\}
$$

4) Find eigenvalues and eigenvectors of the matrix $A=\left[\begin{array}{rrr}-9 & 0 & -10 \\ 2 & 1 & 2 \\ 5 & 0 & 6\end{array}\right]$.
5) Let $B=\left[\begin{array}{ll}1 & 4 \\ 4 & 1\end{array}\right]$.
a) Find an orthogonal matrix P that diagonalizes B.
b) Find B^{9}.

Answers

1) Consider the matrix A whose columns are vectors in S :

$$
\left[\begin{array}{rrrrrr}
1 & 0 & 1 & 1 & 2 & 2 \\
2 & -1 & 1 & 0 & 3 & 2 \\
0 & 1 & 1 & 1 & 1 & 1 \\
-1 & 4 & 3 & 0 & 2 & 1
\end{array}\right]
$$

After row operations, we obtain the REF (Row-Echelon Form) as:

$$
\left[\begin{array}{llllll}
1 & 0 & 1 & 1 & 2 & 2 \\
0 & 1 & 1 & 2 & 1 & 2 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

The positions of leading 1's give us the basis vectors. In other words, we have to choose the first, second,, fourth and sixth vectors to form a basis:

$$
\left\{\left[\begin{array}{r}
1 \\
2 \\
0 \\
-1
\end{array}\right],\left[\begin{array}{r}
0 \\
-1 \\
1 \\
4
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
2 \\
1 \\
1
\end{array}\right]\right\}
$$

2) After row operations, we obtain the RREF (Reduced Row-Echelon Form) of the matrix as:

$$
\left[\begin{array}{rrrrr}
1 & 3 & 0 & -1 & 0 \\
0 & 0 & 1 & 1 & -2 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \Rightarrow \begin{aligned}
& x_{1}+3 x_{2}-x_{4}=0 \\
& x_{3}+x_{4}-2 x_{5}=0
\end{aligned}
$$

There are 3 leading 1's, therefore rank of A is 2 .
There are 3 free parameters $\left(x_{2}, x_{4}, x_{5}\right)$ in the solution of $A \vec{x}=\overrightarrow{0}$, therefore the nullity of A is 3 .
The solution to homogeneous equation is: $x_{1}=-3 x_{2}+x_{4}, \quad x_{3}=-x_{4}+2 x_{5}$. Therefore a basis for nullspace is:

$$
\left\{\left[\begin{array}{r}
-3 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{r}
1 \\
0 \\
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
2 \\
0 \\
1
\end{array}\right]\right\}
$$

3) The given vectors are:
$\overrightarrow{u_{1}}=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 2\end{array}\right], \quad \overrightarrow{u_{2}}=\left[\begin{array}{r}-1 \\ 4 \\ 2 \\ 3\end{array}\right], \quad \overrightarrow{u_{3}}=\left[\begin{array}{r}2 \\ 10 \\ 5 \\ 4\end{array}\right]$.
Let's use the Gram-Schmidt process:

$$
\begin{aligned}
\overrightarrow{v_{1}} & =\overrightarrow{u_{1}}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
2
\end{array}\right] \\
\overrightarrow{v_{2}} & =\overrightarrow{u_{2}}-\frac{\left\langle\overrightarrow{u_{2}}, \overrightarrow{v_{1}}\right\rangle}{\left\langle\overrightarrow{v_{1}}, \overrightarrow{v_{1}}\right\rangle} \overrightarrow{v_{1}} \\
& =\left[\begin{array}{r}
4 \\
4 \\
2 \\
3
\end{array}\right]-\frac{-1+6}{1+4}\left[\begin{array}{l}
1 \\
0 \\
0 \\
2
\end{array}\right]=\left[\begin{array}{r}
-2 \\
4 \\
2 \\
1
\end{array}\right] \\
\overrightarrow{v_{3}} & =\overrightarrow{u_{3}}-\frac{\left\langle\overrightarrow{u_{3}}, \overrightarrow{v_{1}}\right\rangle}{\left\langle\overrightarrow{v_{1}}, \overrightarrow{v_{1}}\right\rangle} \overrightarrow{v_{1}}-\frac{\left\langle\overrightarrow{u_{3}}, \overrightarrow{v_{2}}\right\rangle}{\left\langle\overrightarrow{v_{2}}, \overrightarrow{v_{2}}\right\rangle} \overrightarrow{v_{2}} \\
& =\left[\begin{array}{r}
2 \\
10 \\
5 \\
4
\end{array}\right]-\frac{2+8}{1+4}\left[\begin{array}{l}
1 \\
0 \\
0 \\
2
\end{array}\right]-\frac{50}{25}\left[\begin{array}{r}
-2 \\
4 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{r}
4 \\
4 \\
2 \\
1 \\
-2
\end{array}\right]
\end{aligned}
$$

After normalization, we obtain:
$\overrightarrow{w_{1}}=\frac{\overrightarrow{v_{1}}}{\left\|\vec{v}_{1}\right\|}=\frac{1}{\sqrt{5}}\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 2\end{array}\right]$
$\overrightarrow{w_{2}}=\frac{\overrightarrow{v_{2}}}{\left\|\overrightarrow{v_{2}}\right\|}=\frac{1}{5}\left[\begin{array}{r}-2 \\ 4 \\ 2 \\ 1\end{array}\right]$
$\overrightarrow{w_{3}}=\frac{\overrightarrow{v_{3}}}{\left\|\overrightarrow{v_{3}}\right\|}=\frac{1}{5}\left[\begin{array}{r}4 \\ 2 \\ 1 \\ -2\end{array}\right]$
4) $\operatorname{det}(\lambda I-A)=0 \quad \Rightarrow \quad\left|\begin{array}{ccc}\lambda+9 & 0 & 10 \\ -2 & \lambda-1 & -2 \\ -5 & 0 & \lambda-6\end{array}\right|=0$

Characteristic equation is:

$$
\begin{aligned}
(\lambda-1)[(\lambda+9)(\lambda-6)+50] & =0 \\
(\lambda-1)\left[\lambda^{2}+3 \lambda-4\right] & =0 \\
(\lambda-1)^{2}(\lambda+4) & =0
\end{aligned}
$$

Eigenvalues are: $\lambda_{1}=1$ (double root) and $\lambda_{2}=-4$.

- $\lambda_{1}=1$

$$
\begin{aligned}
10 x+10 z & =0 \\
-2 x-2 z & =0 \\
-5 x-5 y & =0
\end{aligned}
$$

Note that all three equations are the same. y and z are free parameters and $x=-z$. We can find two linearly independent eigenvectors:

$$
\overrightarrow{v_{1}}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \quad \text { and } \quad \overrightarrow{v_{2}}=\left[\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right] .
$$

- $\lambda_{2}=-4$

$$
\begin{aligned}
5 x+10 z & =0 \\
-2 x-5 y-2 z & =0 \\
-5 x-10 z & =0
\end{aligned}
$$

We can easily see that $x=-2 z$ and $y=\frac{2}{5} z$. A solution is:
$\overrightarrow{v_{3}}=\left[\begin{array}{r}-10 \\ 2 \\ 5\end{array}\right]$.
5) a) $|\lambda I-B|=0 \quad \Rightarrow\left|\begin{array}{cc}\lambda-1 & -4 \\ -4 & \lambda-1\end{array}\right|=0$
$\lambda^{2}-2 \lambda-15=0 \quad \Rightarrow \quad(\lambda-5)(\lambda+3)=0$

Eigenvalues are: $\lambda=5$ and $\lambda=-3$.

- $\lambda=5$

$$
\begin{aligned}
4 x-4 y & =0 \\
-4 x+4 y & =0
\end{aligned} \quad \Rightarrow \quad \text { An eigenvector is: } \vec{v}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

- $\lambda=-3$

$$
\begin{aligned}
& -4 x-4 y=0 \\
& -4 x-4 y=0
\end{aligned} \quad \Rightarrow \quad \text { An eigenvector is: } \overrightarrow{v_{2}}=\left[\begin{array}{r}
1 \\
-1
\end{array}\right]
$$

After normalization, we obtain the orthogonal matrix as: $P=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right]$.
b) $P^{-1}=P=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right]$.

$$
\begin{aligned}
& D=P^{-1} B P=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{ll}
1 & 4 \\
4 & 1
\end{array}\right] \frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right] \\
&=\frac{1}{2}\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{rr}
5 & -3 \\
5 & 3
\end{array}\right] \\
&=\left[\begin{array}{rr}
5 & 0 \\
0 & -3
\end{array}\right] \\
& B=P D P^{-1} \Rightarrow B^{9}=P D^{9} P^{-1} \\
& B^{9}=P^{-1} B P=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{rr}
5^{9} & 0 \\
0 & -3^{9}
\end{array}\right] \frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right] \\
&=\frac{1}{2}\left[\begin{array}{rr}
5^{9}-3^{9} & 5^{9}+3^{9} \\
5^{9}+3^{9} & 5^{9}-3^{9}
\end{array}\right]
\end{aligned}
$$

