MATH 255 - Vector Calculus and Linear Algebra Second Midterm Examination

1) Consider the following linear system of equations:

$$
\begin{aligned}
2 x+3 y+4 z & =1 \\
x+z & =1 \\
-6 x+7 y-z & =-10
\end{aligned}
$$

a) Evaluate the inverse of the coefficient matrix A^{-1}.
b) Use the inverse of the coefficient matrix, A^{-1}, to solve the system.
2) Solve the following linear system of equations:

$$
\begin{array}{rlr}
x_{1}+2 x_{3}-3 x_{4} & =7 \\
-2 x_{1}+x_{2}-3 x_{3}+7 x_{4} & = & -11 \\
4 x_{1}-2 x_{2}+7 x_{3}-10 x_{4} & = & 25
\end{array}
$$

3) This question has two unrelated parts:
a) Evaluate the determinant of $A=\left[\begin{array}{rrrr}3 & 1 & 5 & 1 \\ 0 & 8 & 4 & 2 \\ -3 & 7 & -2 & 4 \\ 3 & 9 & 9 & 7\end{array}\right]$.
b) Does each of the following sets represent a subspace for the corresponding vector space? Verify your answer by calculation.
1. $\left[\begin{array}{l}a \\ b \\ b \\ a\end{array}\right]$
2. $\left[\begin{array}{ll}1 & a \\ b & 0\end{array}\right]$
3. The set of functions that satisfy $\int_{0}^{1} f(x) d x=2$
4. The set of polynomials of the form $a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$ where $a_{2}=a_{1} a_{3}$
4) Consider the following set of vectors $A=\left\{\left[\begin{array}{l}5 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{r}3 \\ -1 \\ 2\end{array}\right]\right\}$.
a) Does A span \mathbb{R}^{3} ? Verify your answer.
b) Are the vectors in A linearly independent? Verify your answer.
c) Is A a basis for \mathbb{R}^{3} ?
5) Find a basis for \mathbb{R}^{3} choosing vectors from the set $A=\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{r}5 \\ -3 \\ -2\end{array}\right],\left[\begin{array}{r}-1 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{r}2 \\ -4 \\ -5\end{array}\right]\right\}$.

Answers

1) a) $A=\left[\begin{array}{rrr}2 & 3 & 4 \\ 1 & 0 & 1 \\ -6 & 7 & -1\end{array}\right]$
$A^{-1}=\frac{\operatorname{adj} A}{\operatorname{det} A} \frac{\left[\begin{array}{rrr}-7 & -5 & 7 \\ 31 & 22 & -32 \\ 3 & -2 & -3\end{array}\right]^{T}}{|A|}=\left[\begin{array}{rrr}7 & -31 & -3 \\ 5 & -22 & 2 \\ -7 & 32 & 3\end{array}\right]$
b) $A \vec{x}=\vec{b} \quad \Rightarrow \quad \vec{x}=A^{-1} \vec{b}$
$\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{rrr}7 & -31 & -3 \\ 5 & -22 & 2 \\ -7 & 32 & 3\end{array}\right]\left[\begin{array}{r}1 \\ 1 \\ -10\end{array}\right]=\left[\begin{array}{r}6 \\ 3 \\ -5\end{array}\right]$
2) The augmented matrix is:

$$
\left[\begin{array}{rrrr|r}
1 & 0 & 2 & -3 & 7 \\
-2 & 1 & -3 & 7 & -11 \\
4 & -2 & 7 & -10 & 25
\end{array}\right]
$$

After elementary row operations we obtain:
$\left[\begin{array}{rrrr|r}1 & 0 & 0 & -11 & 1 \\ 0 & 1 & 0 & -3 & 0 \\ 0 & 0 & 1 & 4 & 3\end{array}\right]$
This is equivalent to the system:

$$
\begin{aligned}
x_{1}-11 x_{4} & =1 \\
x_{2}-3 x_{4} & =0 \\
x_{3}+4 x_{4} & =3
\end{aligned}
$$

There are infinitely many solutions. x_{4} is a free parameter:

$$
\begin{aligned}
x_{4} & =t \\
x_{3} & =3-4 t \\
x_{2} & =3 t \\
x_{1} & =1+11 t
\end{aligned}
$$

3) a) Let's reduce A to upper triangular form.

After $R_{3} \rightarrow R_{3}+R_{1}$ and $R_{4} \rightarrow R_{4}-R_{1}$ we obtain:
$\left|\begin{array}{llll}3 & 1 & 5 & 1 \\ 0 & 8 & 4 & 2 \\ 0 & 8 & 3 & 5 \\ 0 & 8 & 4 & 6\end{array}\right|$
After $R_{3} \rightarrow R_{3}-R_{2}$ and $R_{4} \rightarrow R_{4}-R_{2}$ we obtain:
$\left|\begin{array}{rrrr}3 & 1 & 5 & 1 \\ 0 & 8 & 4 & 2 \\ 0 & 0 & -1 & 3 \\ 0 & 0 & 0 & 4\end{array}\right|$
$\Rightarrow \quad \operatorname{det}(A)=3 \cdot 8 \cdot(-1) \cdot 4=-96$
b)

1. YES. $\left[\begin{array}{c}a_{1} \\ b_{1} \\ b_{1} \\ a_{1}\end{array}\right]+\left[\begin{array}{c}a_{2} \\ b_{2} \\ b_{2} \\ a_{2}\end{array}\right] \in W \quad$ and $\quad k\left[\begin{array}{c}a_{1} \\ b_{1} \\ b_{1} \\ a_{1}\end{array}\right] \in W$.
2. NO. We can show this with a counterexample:

$$
\left[\begin{array}{ll}
1 & 2 \\
2 & 0
\end{array}\right] \in W \quad \text { but } \quad 5\left[\begin{array}{ll}
1 & 2 \\
2 & 0
\end{array}\right]=\left[\begin{array}{rr}
5 & 10 \\
10 & 0
\end{array}\right] \notin W \text {. }
$$

3. NO. We can show this with a counterexample:

$$
f(x)=2 \in W \quad \text { but } \quad 3 f(x)=6 \notin W .
$$

4. NO. We can show this with a counterexample:

$$
1+x+x^{2}+x^{3} \in W \quad \text { but } \quad 2+2 x+2 x^{2}+2 x^{3} \notin W .
$$

4) a) Given $\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \in \mathbb{R}^{3}$, can we find c_{1}, c_{2}, c_{3} such that
$c_{1}\left[\begin{array}{l}5 \\ 2 \\ 3\end{array}\right]+c_{2}\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right]+c_{3}\left[\begin{array}{r}3 \\ -1 \\ 2\end{array}\right]=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$
$\left[\begin{array}{rrr}5 & 2 & 3 \\ 2 & 1 & -1 \\ 3 & 1 & 2\end{array}\right]\left[\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right]=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$
It is sufficient to check determinant. Determinant of the coefficient matrix is $-2 \neq 0$, therefore it is invertible. The system has unique solution for all x, y, z, so A spans \mathbb{R}^{3}.
b) Can we find nonzero c_{1}, c_{2}, c_{3} such that
$c_{1}\left[\begin{array}{l}5 \\ 2 \\ 3\end{array}\right]+c_{2}\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right]+c_{3}\left[\begin{array}{r}3 \\ -1 \\ 2\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
Once again, it is sufficient to check determinant. It is the same matrix as part a). The determinant is nonzero, matrix is invertible. Therefore the system has only the trivial solution $c_{1}=0, c_{2}=0, c_{3}=0$, so A is linearly independent.
c) Using parts a) and b), we see that A spans \mathbb{R}^{3} and A is linearly independent. Therefore A is a basis for \mathbb{R}^{3}.
5) Consider the matrix whose columns are the vectors in A : $\left[\begin{array}{rrrr}1 & 5 & -1 & 2 \\ 1 & -3 & 1 & -4 \\ 1 & -2 & -1 & -5\end{array}\right]$

After row reduction, we find: $\left[\begin{array}{rrrr}1 & 0 & 0 & -2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1\end{array}\right]$
The first three columns contain leading 1's and they are linearly independent. Therefore the first three columns of the original matrix are also linearly independent and form a basis for \mathbb{R}^{3}.
$B=\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{r}5 \\ -3 \\ -2\end{array}\right],\left[\begin{array}{r}-1 \\ 1 \\ -1\end{array}\right]\right\}$.

