

Çankaya University Department of Mathematics 2018 - 2019 Fall Semester

MATH 255 - Vector Calculus and Linear Algebra Second Midterm Examination

1) Consider the following linear system of equations:

2x + 3y + 4z = 1x + z = 1-6x + 7y - z = -10

- a) Evaluate the inverse of the coefficient matrix A^{-1} .
- **b)** Use the inverse of the coefficient matrix, A^{-1} , to solve the system.

2) Solve the following linear system of equations:

 $\begin{array}{rcl} x_1 + 2x_3 - 3x_4 &=& 7\\ -2x_1 + x_2 - 3x_3 + 7x_4 &=& -11\\ 4x_1 - 2x_2 + 7x_3 - 10x_4 &=& 25 \end{array}$

3) This question has two unrelated parts:

	3	1	5	1]
a) Evaluate the determinant of $A =$	0	8	4	2	
	-3	7	-2	4	·
	3	9	9	7	

b) Does each of the following sets represent a subspace for the corresponding vector space? Verify your answer by calculation.

 1.
 $\begin{bmatrix} a \\ b \\ b \\ a \end{bmatrix}$

 2.
 $\begin{bmatrix} 1 & a \\ b & 0 \end{bmatrix}$

3. The set of functions that satisfy $\int_0^1 f(x) dx = 2$

4. The set of polynomials of the form $a_0 + a_1x + a_2x^2 + a_3x^3$ where $a_2 = a_1a_3$

4) Consider the following set of vectors $A = \left\{ \begin{bmatrix} 5\\2\\3 \end{bmatrix}, \begin{bmatrix} 2\\1\\1 \end{bmatrix}, \begin{bmatrix} 3\\-1\\2 \end{bmatrix} \right\}.$

a) Does A span \mathbb{R}^3 ? Verify your answer.

b) Are the vectors in A linearly independent? Verify your answer.

c) Is A a basis for \mathbb{R}^3 ?

5) Find a basis for \mathbb{R}^3 choosing vectors from the set $A = \left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 5\\-3\\-2 \end{bmatrix}, \begin{bmatrix} -1\\1\\-1 \end{bmatrix}, \begin{bmatrix} 2\\-4\\-5 \end{bmatrix} \right\}.$

1) a)
$$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 0 & 1 \\ -6 & 7 & -1 \end{bmatrix}$$

 $A^{-1} = \frac{\operatorname{adj} A}{\operatorname{det} A} = \frac{\begin{bmatrix} -7 & -5 & 7 \\ 31 & 22 & -32 \\ 3 & -2 & -3 \end{bmatrix}^{T}}{|A|} = \begin{bmatrix} 7 & -31 & -3 \\ 5 & -22 & 2 \\ -7 & 32 & 3 \end{bmatrix}$
b) $A\overrightarrow{x} = \overrightarrow{b} \Rightarrow \overrightarrow{x} = A^{-1}\overrightarrow{b}$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 7 & -31 & -3 \\ 5 & -22 & 2 \\ -7 & 32 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ -10 \end{bmatrix} = \begin{bmatrix} 6 \\ 3 \\ -5 \end{bmatrix}$$

2) The augmented matrix is:

[1	0	2	-3	7]
-2	1	-3	7	-11
4	-2	7	-10	$\begin{bmatrix} 7\\ -11\\ 25 \end{bmatrix}$

After elementary row operations we obtain:

This is equivalent to the system:

There are infinitely many solutions. x_4 is a free parameter:

 $\begin{array}{rcl} x_4 & = & t \\ x_3 & = & 3-4t \\ x_2 & = & 3t \\ x_1 & = & 1+11t \end{array}$

3) a) Let's reduce A to upper triangular form.

After $R_3 \rightarrow R_3 + R_1$ and $R_4 \rightarrow R_4 - R_1$ we obtain:

After $R_3 \rightarrow R_3 - R_2$ and $R_4 \rightarrow R_4 - R_2$ we obtain:

b)

1. YES.
$$\begin{bmatrix} a_1\\b_1\\b_1\\a_1 \end{bmatrix} + \begin{bmatrix} a_2\\b_2\\b_2\\a_2 \end{bmatrix} \in W$$
 and $k \begin{bmatrix} a_1\\b_1\\b_1\\a_1 \end{bmatrix} \in W.$

2. NO. We can show this with a counterexample:

$$\begin{bmatrix} 1 & 2 \\ 2 & 0 \end{bmatrix} \in W \quad \text{but} \quad 5 \begin{bmatrix} 1 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 5 & 10 \\ 10 & 0 \end{bmatrix} \notin W.$$

3. NO. We can show this with a counterexample:

 $f(x) = 2 \in W$ but $3f(x) = 6 \notin W$.

4. NO. We can show this with a counterexample:

$$1 + x + x^2 + x^3 \in W$$
 but $2 + 2x + 2x^2 + 2x^3 \notin W$.

4) a) Given $\begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3$, can we find c_1, c_2, c_3 such that $c_1 \begin{bmatrix} 5 \\ 2 \\ 3 \end{bmatrix} + c_2 \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} + c_3 \begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ $\begin{bmatrix} 5 & 2 & 3 \\ 2 & 1 & -1 \\ 3 & 1 & 2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$

It is sufficient to check determinant. Determinant of the coefficient matrix is $-2 \neq 0$, therefore it is invertible. The system has unique solution for all x, y, z, so A spans \mathbb{R}^3 .

b) Can we find nonzero c_1, c_2, c_3 such that

$c_1 \begin{bmatrix} 5\\2\\3 \end{bmatrix} + c_2 \begin{bmatrix} 2\\1\\1 \end{bmatrix} + c_3 \begin{bmatrix} 3\\-1\\2 \end{bmatrix} =$	$\left[\begin{array}{c} 0\\ 0\\ 0\end{array}\right]$
--	--

Once again, it is sufficient to check determinant. It is the same matrix as part **a**). The determinant is nonzero, matrix is invertible. Therefore the system has only the trivial solution $c_1 = 0$, $c_2 = 0$, $c_3 = 0$, so A is linearly independent.

c) Using parts a) and b), we see that A spans \mathbb{R}^3 and A is linearly independent. Therefore A is a basis for \mathbb{R}^3 .

5) Consider the matrix whose columns are the vectors in A: $\begin{bmatrix} 1 & 5 & -1 & 2 \\ 1 & -3 & 1 & -4 \\ 1 & -2 & -1 & -5 \end{bmatrix}$

After row reduction, we find: $\begin{bmatrix} 1 & 0 & 0 & -2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$

The first three columns contain leading 1's and they are linearly independent. Therefore the first three columns of the original matrix are also linearly independent and form a basis for \mathbb{R}^3 .

$$B = \left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 5\\-3\\-2 \end{bmatrix}, \begin{bmatrix} -1\\1\\-1 \end{bmatrix} \right\}$$