

Çankaya University Department of Mathematics 2019 - 2020 Fall Semester

MATH 255 - Vector Calculus and Linear Algebra Second Midterm Examination

1) For which values of a and b does the following system of equations have

- a) Unique solution?
- **b)** Infinitely many solutions?
- c) No solution?

$$x_1 + x_2 + 2x_3 = 2$$

$$x_2 + (3a+2)x_3 = 3b+3$$

$$2x_1 + 3x_2 + (4a+6)x_3 = 4b+7$$

2) Let
$$A = \begin{bmatrix} 2 & 3 & -3 \\ 5 & -4 & 8 \\ 10 & 3 & 1 \end{bmatrix}$$
.

- **a)** Find the determinant of A.
- **b)** Find the inverse of *A*.

3) Consider the given vector spaces V and their subsets W. Is W a subspace of V? Explain.

a)
$$V = \mathbb{R}^5$$
, W is the set of vectors of the form $\begin{bmatrix} a \\ 0 \\ b \\ 0 \\ c \end{bmatrix}$ where $a + b + c = 12$.

b) $V = M_{2\times 3}$, W is the set of matrices of the form $\begin{bmatrix} a & b & c \\ a^2 & b^2 & c^2 \end{bmatrix}$.

c) $V = P_3$, W is the set of polynomials of the form $a + bx^2 + (a + 2b)x^3$.

4) The following sets are subsets of the vector space \mathbb{R}^4 .

a) Is
$$S_1 = \left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}, \begin{bmatrix} 3\\0\\3\\0 \end{bmatrix} \right\}$$
 linearly independent?
b) Does $S_2 = \left\{ \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}, \begin{bmatrix} 2\\1\\1\\0 \end{bmatrix}, \begin{bmatrix} 2\\1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix}, \begin{bmatrix} 4\\2\\4\\2 \end{bmatrix}, \begin{bmatrix} 2\\1\\4\\0 \end{bmatrix} \right\}$ span \mathbb{R}^4 ?

5) Consider the following homogeneous system of 2 equations in 5 unknowns:

$$\begin{aligned} x_1 + 3x_2 - x_4 &= 0\\ 2x_1 + 6x_2 + x_3 - 2x_4 - 2x_5 &= 0 \end{aligned}$$

- a) Find a basis for solution space.
- **b)** Find the dimension of solution space.

Answers

1) The augmented matrix is: $\begin{bmatrix} 1 & 1 & 2 & | & 2 \\ 0 & 1 & 3a+2 & | & 3b+3 \\ 2 & 3 & 4a+6 & | & 4b+7 \end{bmatrix}$ After elementary row operations we obtain: $\begin{bmatrix} 1 & 1 & 2 & | & 2 \\ 0 & 1 & 2 & | & 3 \\ 0 & 0 & a & | & b \end{bmatrix}$

The last row of the matrix should be checked for different possibilities:

- $a \neq 0 \Rightarrow$ Unique solution.
- $a = 0, b = 0 \implies$ Infinitely many solutions.
- $a = 0, \ b \neq 0 \quad \Rightarrow \quad \text{No solution.}$

2) а)
$$|A| = 4$$

b)
$$A^{-1} = \frac{1}{4} \begin{bmatrix} -28 & -12 & 12 \\ 75 & 32 & -31 \\ 55 & 24 & -23 \end{bmatrix}$$

3) a) NO. For example:

$$\overrightarrow{u'} = \begin{bmatrix} 4\\0\\4\\0\\4 \end{bmatrix} \in W, \quad \overrightarrow{v'} = \begin{bmatrix} 6\\0\\0\\6 \end{bmatrix} \in W \quad \text{but} \quad \overrightarrow{u'} + \overrightarrow{v} = \begin{bmatrix} 10\\0\\4\\0\\10 \end{bmatrix} \notin W$$

b) NO. For example:

$$M = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 9 \end{bmatrix} \in W, \quad \text{but} \quad 2M = \begin{bmatrix} 2 & 4 & 6 \\ 2 & 8 & 18 \end{bmatrix} \notin W$$

c) YES. Let $p = a_1 + b_1 x^2 + (a_1 + 2b_1)x^3$, $q = a_2 + b_2 x^2 + (a_2 + 2b_2)x^3$. Then: $p + q = (a_1 + a_2) + (b_1 + b_2)x^2 + (a_1 + a_2 + 2(b_1 + b_2))x^3 \in W$ $kp = ka_1 + kb_1x^2 + k(a_1 + 2b_1)x^3 \in W$

4) a) Consider the equation:
$$c_1 \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} + c_2 \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix} + c_3 \begin{bmatrix} 3\\0\\0\\0 \end{bmatrix} = \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix}$$

Is there a nontrivial solution? We have to check the augmented matrix:
$$\begin{bmatrix} 1&1&3&|&0\\1&2&0&|&0\\1&3&3&|&0\\1&4&0&|&0 \end{bmatrix}$$

After row operations, we obtain: $\begin{bmatrix} 1 & 1 & 3 & | & 0 \\ 0 & 1 & -3 & | & 0 \\ 0 & 0 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$

We can see that $c_3 = 0$, \Rightarrow $c_2 = 0$, \Rightarrow $c_1 = 0$. Therefore S_1 is Linearly Independent.

b) Consider the equation:
$$c_1 \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix} + c_2 \begin{bmatrix} 2\\1\\1\\0 \end{bmatrix} + c_3 \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix} + c_4 \begin{bmatrix} 4\\2\\4\\2 \end{bmatrix} + c_5 \begin{bmatrix} 2\\1\\4\\0 \end{bmatrix} = \begin{bmatrix} x_1\\x_2\\x_3\\x_4 \end{bmatrix}$$

Is there always a solution for given numbers x_1, x_2, x_3, x_4 ?

Consider the augmented matrix:	$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$	2 1 1 0	$egin{array}{c} 0 \\ 0 \\ 0 \\ 1 \end{array}$	$\begin{array}{c} 4 \\ 2 \\ 4 \\ 2 \end{array}$	$\begin{array}{c c c} 2 & x_1 \\ 1 & x_2 \\ 4 & x_3 \\ 0 & x_4 \end{array}$	
After row operations, we obtain:	$\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$	0 1 0 0	$\begin{array}{c} 1 \\ -1 \\ 1 \\ 0 \end{array}$	$2 \\ 2 \\ 0 \\ 0$	$\begin{array}{c} 0 \\ 4 \\ -3 \\ 0 \end{array}$	$\begin{array}{c c} x_4 \\ x_3 - x_4 \\ x_2 - x_3 + x_4 \\ x_1 - 2x_2 \end{array}$

Checking last row, we see that there is a solution if and only if $x_1 = 2x_2$. Therefore S_2 does NOT span \mathbb{R}^4 .

5) The reduced row-echelon form of the augmented matrix is:

[1	3	0	-1	0	0
0	0	1	0	-2	0

The equations give the results: $x_3 = 2x_5$, $x_1 = -3x_2 + x_4$. In vector form:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = x_2 \begin{bmatrix} -3 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} 0 \\ 0 \\ 2 \\ 0 \\ 1 \end{bmatrix}$$

Therefore a basis is:

$$\left\{ \begin{bmatrix} -3\\1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\2\\0\\1 \end{bmatrix} \right\}$$

Dimension is 3.