Cankaya University
Department of Mathematics
2019-2020 Fall Semester

MATH 255 - Vector Calculus and Linear Algebra Second Midterm Examination

1) For which values of a and b does the following system of equations have
a) Unique solution?
b) Infinitely many solutions?
c) No solution?

$$
\begin{aligned}
x_{1}+x_{2}+2 x_{3} & =2 \\
x_{2}+(3 a+2) x_{3} & =3 b+3 \\
2 x_{1}+3 x_{2}+(4 a+6) x_{3} & =4 b+7
\end{aligned}
$$

2) Let $A=\left[\begin{array}{rrr}2 & 3 & -3 \\ 5 & -4 & 8 \\ 10 & 3 & 1\end{array}\right]$.
a) Find the determinant of A.
b) Find the inverse of A.
3) Consider the given vector spaces V and their subsets W. Is W a subspace of V ? Explain.
a) $V=\mathbb{R}^{5}, W$ is the set of vectors of the form $\left[\begin{array}{l}a \\ 0 \\ b \\ 0 \\ c\end{array}\right]$ where $a+b+c=12$.
b) $V=M_{2 \times 3}, W$ is the set of matrices of the form $\left[\begin{array}{lll}a & b & c \\ a^{2} & b^{2} & c^{2}\end{array}\right]$.
c) $V=P_{3}, W$ is the set of polynomials of the form $a+b x^{2}+(a+2 b) x^{3}$.
4) The following sets are subsets of the vector space \mathbb{R}^{4}.
a) Is $S_{1}=\left\{\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right],\left[\begin{array}{l}3 \\ 0 \\ 3 \\ 0\end{array}\right]\right\}$ linearly independent?
b) Does $S_{2}=\left\{\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}4 \\ 2 \\ 4 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 4 \\ 0\end{array}\right]\right\}$ span \mathbb{R}^{4} ?
5) Consider the following homogeneous system of 2 equations in 5 unknowns:

$$
\begin{array}{r}
x_{1}+3 x_{2}-x_{4}=0 \\
2 x_{1}+6 x_{2}+x_{3}-2 x_{4}-2 x_{5}=0
\end{array}
$$

a) Find a basis for solution space.
b) Find the dimension of solution space.

Answers

1) The augmented matrix is: $\left[\begin{array}{ccc|c}1 & 1 & 2 & 2 \\ 0 & 1 & 3 a+2 & 3 b+3 \\ 2 & 3 & 4 a+6 & 4 b+7\end{array}\right]$

After elementary row operations we obtain: $\left[\begin{array}{ccc|c}1 & 1 & 2 & 2 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & a & b\end{array}\right]$
The last row of the matrix should be checked for different possibilities:

- $a \neq 0 \Rightarrow$ Unique solution.
- $a=0, b=0 \quad \Rightarrow \quad$ Infinitely many solutions.
- $a=0, b \neq 0 \quad \Rightarrow \quad$ No solution.

2) a) $|A|=4$
b) $A^{-1}=\frac{1}{4}\left[\begin{array}{rrr}-28 & -12 & 12 \\ 75 & 32 & -31 \\ 55 & 24 & -23\end{array}\right]$
3) a) NO. For example:

$$
\vec{u}=\left[\begin{array}{l}
4 \\
0 \\
4 \\
0 \\
4
\end{array}\right] \in W, \quad \vec{v}=\left[\begin{array}{l}
6 \\
0 \\
0 \\
0 \\
6
\end{array}\right] \in W \quad \text { but } \quad \vec{u}+\vec{v}=\left[\begin{array}{r}
10 \\
0 \\
4 \\
0 \\
10
\end{array}\right] \notin W
$$

b) NO. For example:

$$
M=\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 4 & 9
\end{array}\right] \in W, \quad \text { but } \quad 2 M=\left[\begin{array}{rrr}
2 & 4 & 6 \\
2 & 8 & 18
\end{array}\right] \notin W
$$

c) YES. Let $p=a_{1}+b_{1} x^{2}+\left(a_{1}+2 b_{1}\right) x^{3}, q=a_{2}+b_{2} x^{2}+\left(a_{2}+2 b_{2}\right) x^{3}$. Then:

$$
\begin{aligned}
& p+q=\left(a_{1}+a_{2}\right)+\left(b_{1}+b_{2}\right) x^{2}+\left(a_{1}+a 2+2\left(b_{1}+b_{2}\right)\right) x^{3} \in W \\
& k p=k a_{1}+k b_{1} x^{2}+k\left(a_{1}+2 b_{1}\right) x^{3} \in W
\end{aligned}
$$

4) a) Consider the equation: $c_{1}\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]+c_{2}\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]+c_{3}\left[\begin{array}{l}3 \\ 0 \\ 3 \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$

Is there a nontrivial solution? We have to check the augmented matrix: $\left[\begin{array}{lll|l}1 & 1 & 3 & 0 \\ 1 & 2 & 0 & 0 \\ 1 & 3 & 3 & 0 \\ 1 & 4 & 0 & 0\end{array}\right]$
After row operations, we obtain: $\left[\begin{array}{rrr|r}1 & 1 & 3 & 0 \\ 0 & 1 & -3 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
We can see that $c_{3}=0, \quad \Rightarrow \quad c_{2}=0, \quad \Rightarrow \quad c_{1}=0$. Therefore S_{1} is Linearly Independent.
b) Consider the equation: $c_{1}\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right]+c_{2}\left[\begin{array}{l}2 \\ 1 \\ 1 \\ 0\end{array}\right]+c_{3}\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]+c_{4}\left[\begin{array}{l}4 \\ 2 \\ 4 \\ 2\end{array}\right]+c_{5}\left[\begin{array}{l}2 \\ 1 \\ 4 \\ 0\end{array}\right]=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]$

Is there always a solution for given numbers $x_{1}, x_{2}, x_{3}, x_{4}$?

Consider the augmented matrix: $\left[\begin{array}{ccccc|c}0 & 2 & 0 & 4 & 2 & x_{1} \\ 0 & 1 & 0 & 2 & 1 & x_{2} \\ 1 & 1 & 0 & 4 & 4 & x_{3} \\ 1 & 0 & 1 & 2 & 0 & x_{4}\end{array}\right]$
After row operations, we obtain: $\left[\begin{array}{rrrrr|c}1 & 0 & 1 & 2 & 0 & x_{4} \\ 0 & 1 & -1 & 2 & 4 & x_{3}-x_{4} \\ 0 & 0 & 1 & 0 & -3 & x_{2}-x_{3}+x_{4} \\ 0 & 0 & 0 & 0 & 0 & x_{1}-2 x_{2}\end{array}\right]$
Checking last row, we see that there is a solution if and only if $x_{1}=2 x_{2}$. Therefore S_{2} does NOT span \mathbb{R}^{4}.
5) The reduced row-echelon form of the augmented matrix is:

$$
\left[\begin{array}{rrrrr|r}
1 & 3 & 0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 & -2 & 0
\end{array}\right]
$$

The equations give the results: $x_{3}=2 x_{5}, \quad x_{1}=-3 x_{2}+x_{4}$. In vector form:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=x_{2}\left[\begin{array}{r}
-3 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
1 \\
0 \\
0 \\
1 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{l}
0 \\
0 \\
2 \\
0 \\
1
\end{array}\right]
$$

Therefore a basis is:

$$
\left\{\left[\begin{array}{r}
-3 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
2 \\
0 \\
1
\end{array}\right]\right\}
$$

Dimension is 3 .

