MATH 255 - Vector Calculus and Linear Algebra

EXERCISE SET 4

- 1) Let S be the part of the paraboloid $z=x^2+y^2$ that lies below the plane z=1, oriented upward. Let $\vec{F}=y^2\vec{i}+x\vec{j}+z^2\vec{k}$.
 - a) Evaluate $\iint_S (\vec{\nabla} \times \vec{F}) \bullet \vec{n} dS$ directly.
 - **b)** Use Stoke's theorem to evaluate $\iint_S (\vec{\nabla} \times \vec{F}) \bullet \vec{n} dS$. ANSWER: a) π b) π
- 2) Let S be the part of the cone $z = \sqrt{x^2 + y^2}$ bounded by the plane z = 4, oriented downward. Let $\vec{F} = -y\vec{i} + x\vec{j} 2\vec{k}$.
 - a) Evaluate $\iint_S (\vec{\nabla} \times \vec{F}) \bullet \vec{n} dS$, directly.
 - **b)** Use Stoke's theorem to evaluate $\iint_S \left(\vec{\nabla} \times \vec{F} \right) \bullet \vec{n} dS.$ ANSWER: a) -32π b) -32π
- 3) Let S be the part of the paraboloid $z = 5 x^2 y^2$ that lies above the plane z = 1, oriented upward. Let $\vec{F} = -2yz\vec{i} + y\vec{j} + 3x\vec{k}$.
 - a) Evaluate $\iint_S (\vec{\nabla} \times \vec{F}) \bullet \vec{n} dS$, directly.
 - **b)** Use Stoke's theorem to evaluate $\iint_S (\vec{\nabla} \times \vec{F}) \bullet \vec{n} dS$. ANSWER: a) 8π b) 8π
- 4) Let S be the hemisphere $x^2 + y^2 + z^2 = 1$, $y \ge 0$, oriented in the direction of positive y-axis. Let $\vec{F} = y\vec{i} + z\vec{j} + x\vec{k}$.
 - a) Evaluate $\iint_{S} (\vec{\nabla} \times \vec{F}) \bullet \vec{n} dS$, directly.
 - **b)** Use Stoke's theorem to evaluate $\iint_S (\vec{\nabla} \times \vec{F}) \cdot \vec{n} dS$. ANSWER: a) $-\pi$ b) $-\pi$