EXERCISE SET 4

1) Let S be the part of the paraboloid $z=x^{2}+y^{2}$ that lies below the plane $z=1$, oriented upward. Let $\vec{F}=y^{2} \vec{i}+x \vec{j}+z^{2} \vec{k}$.
a) Evaluate $\iint_{S}(\vec{\nabla} \times \vec{F}) \bullet \vec{n} d S$ directly.
b) Use Stoke's theorem to evaluate $\iint_{S}(\vec{\nabla} \times \vec{F}) \bullet \vec{n} d S$.

ANSWER: a) π b) π
2) Let S be the part of the cone $z=\sqrt{x^{2}+y^{2}}$ bounded by the plane $z=4$, oriented downward. Let $\vec{F}=-y \vec{i}+x \vec{j}-2 \vec{k}$.
a) Evaluate $\iint_{S}(\vec{\nabla} \times \vec{F}) \bullet \vec{n} d S$, directly.
b) Use Stoke's theorem to evaluate $\iint_{S}(\vec{\nabla} \times \vec{F}) \bullet \vec{n} d S$.

ANSWER: a) -32π b) -32π
3) Let S be the part of the paraboloid $z=5-x^{2}-y^{2}$ that lies above the plane $z=1$, oriented upward. Let $\vec{F}=-2 y z \vec{i}+y \vec{j}+3 x \vec{k}$.
a) Evaluate $\iint_{S}(\vec{\nabla} \times \vec{F}) \bullet \vec{n} d S$, directly.
b) Use Stoke's theorem to evaluate $\iint_{S}(\vec{\nabla} \times \vec{F}) \bullet \vec{n} d S$.

ANSWER: a) 8π b) 8π
4) Let S be the hemisphere $x^{2}+y^{2}+z^{2}=1, \quad y \geq 0$, oriented in the direction of positive y-axis. Let $\vec{F}=y \vec{i}+z \vec{j}+x \vec{k}$.
a) Evaluate $\iint_{S}(\vec{\nabla} \times \vec{F}) \bullet \vec{n} d S$, directly.
b) Use Stoke's theorem to evaluate $\iint_{S}(\vec{\nabla} \times \vec{F}) \bullet \vec{n} d S$.

ANSWER: a) $-\pi$ b) $-\pi$

