MATH 255 - Vector Calculus and Linear Algebra

EXERCISE SET 5

1. Consider the system of linear equations

	+	y	—	z	+	t	+	5w	=	5
3x	+	3y	+	3z	+	t			=	6
x	+	2y			+	t	+	4w	=	6
2x	—	y	+	5z			_	8w	=	-4

- (a) Write the augmented matrix of the system.
- (b) Find the reduced row echelon form of the augmented matrix you found in part (a).
- (c) Find the set of solutions of the system.
- 2. Consider the system of linear equations

2x	—	y			+	5t	=	4
x	_	y	+	z	+	6t	=	0
3x	_	2y	+	2z	+	14t	=	3

- (a) Write the augmented matrix of the system.
- (b) Find the reduced row echelon form of the augmented matrix you found in part (a).
- (c) Find the set of solutions of the system.
- 3. Consider the system of linear equations

2x	—	2y	—	z	+	s	+	2t	+	w	=	-6
-3x	+	3y	—	z			—	7t	+	2w	=	-3
x	—	y	+	z			+	3t	_	w	=	3
x			+	z			+	t	_	w	=	4

- (a) Write the augmented matrix of the system.
- (b) Find the reduced row echelon form of the augmented matrix you found in part (a).
- (c) Find the set of solutions of the system.
- 4. Consider the system of linear equations

- (a) Write the augmented matrix of the system.
- (b) Find the reduced row echelon form of the augmented matrix you found in part (a).
- (c) Find the set of solutions of the system.

5. Let
$$A = \begin{bmatrix} 2 & 3 & -1 \\ 1 & -1 & 2 \\ 4 & 2 & 5 \end{bmatrix}$$
 and $b = \begin{bmatrix} -1 \\ 4 \\ -2 \end{bmatrix}$

(a) Find A^{-1} if A is invertible, by using elementary row operations.

(b) Find the solution of Ax = b by using A^{-1} if A is invertible.

6. Let
$$A = \begin{bmatrix} -1 & 4 & 2 \\ 2 & -1 & 5 \\ 0 & 2 & 1 \end{bmatrix}$$
 and $b = \begin{bmatrix} 11 \\ -11 \\ 11 \end{bmatrix}$

- (a) Find A^{-1} if A is invertible, by using elementary row operations.
- (b) Find the solution of Ax = b by using A^{-1} if A is invertible.

7. Let Let
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & 2 \\ 3 & 7 & 8 \end{bmatrix}$$
 and $b = \begin{bmatrix} 5 \\ 3 \\ -15 \end{bmatrix}$

- (a) Find A^{-1} if A is invertible, by using elementary row operations.
- (b) Find the solution of Ax = b by using A^{-1} if A is invertible.

8. Let
$$A = \begin{bmatrix} 2 & -1 & -7 \\ -2 & 0 & 4 \\ 3 & 1 & 2 \end{bmatrix}$$
 and $b = \begin{bmatrix} -1 \\ 1 \\ -2 \end{bmatrix}$

- (a) Find A^{-1} if A is invertible, by using elementary row operations.
- (b) Find the solution of Ax = b by using A^{-1} if A is invertible.
- 9. Find an equation relating a, b, and c so that the linear system

is consistent for any values of a, b and c that satisfy that equation.

- 10. Find all values of a, for which the following linear system has
 - (a) no solution;
 - (b) a unique solution;
 - (c) infinitely many solutions;

11. Let $A = \begin{bmatrix} 3 & -1 & 5 \\ 1 & -2 & 1 \\ 2 & 6 & a \end{bmatrix}$. Find the value(s) of a so that A is not invertible.