EXERCISE SET 6

1. Let $A=\left[\begin{array}{ccc}2 & 3 & -1 \\ 1 & -1 & 2 \\ 4 & 2 & 5\end{array}\right]$ and $b=\left[\begin{array}{c}-1 \\ 4 \\ -2\end{array}\right]$
(a) Find A^{-1} if A is invertible, by using adjoint of A.
(b) Find the solution of $A x=b$ by using A^{-1} if A is invertible.
(c) Find the solution of $A x=b$ by using Cramer's Rule if A is invertible.
2. Let $A=\left[\begin{array}{ccc}-1 & 4 & 2 \\ 2 & -1 & 5 \\ 0 & 2 & 1\end{array}\right]$ and $b=\left[\begin{array}{c}11 \\ -11 \\ 11\end{array}\right]$
(a) Find A^{-1} if A is invertible, by using adjoint of A.
(b) Find the solution of $A x=b$ by using A^{-1} if A is invertible.
(c) Find the solution of $A x=b$ by using Cramer's Rule if A is invertible.
3. Let Let $A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & 1 & 2 \\ 3 & 7 & 8\end{array}\right]$ and $b=\left[\begin{array}{c}5 \\ 3 \\ -15\end{array}\right]$
(a) Find A^{-1} if A is invertible, by using adjoint of A.
(b) Find the solution of $A x=b$ by using A^{-1} if A is invertible.
(c) Find the solution of $A x=b$ by using Cramer's Rule if A is invertible.
4. Let $A=\left[\begin{array}{ccc}2 & -1 & -7 \\ -2 & 0 & 4 \\ 3 & 1 & 2\end{array}\right]$ and $b=\left[\begin{array}{c}-1 \\ 1 \\ -2\end{array}\right]$
(a) Find A^{-1} if A is invertible, by using adjoint of A.
(b) Find the solution of $A x=b$ by using A^{-1} if A is invertible.
(c) Find the solution of $A x=b$ by using Cramer's Rule if A is invertible.
5. Let $W=\left\{p(x) \in \mathbb{P}_{4} \mid p(2)=0, p(0)=0\right\}$.
(a) Show that W is a subspace of \mathbb{P}_{4}.
(b) Find a basis S for W.
(c) Find a basis B for \mathbb{P}_{4} containing S.
6. For each $u=\left(u_{1}, u_{2}\right), v=\left(v_{1}, v_{2}\right) \in \mathbb{R}^{2}$, define $(u, v)=u_{1} v_{1}-2 u_{1} v_{2}-2 u_{2} v_{1}+5 u_{2} v_{2}$.
a) Determine whether (u, v) is an inner product or not.
b) For $p(x)=(1,2)$ and $v=(1,-1)$ evaluate (u, v).
7. For each $p(x), q(x) \in \mathbb{P}_{2}$, define $(p(x), q(x))=\int_{0}^{2} p(x) q(x) d x$.
a) Determine whether $(p(x), q(x))$ is an inner product or not.
b) For $p(x)=2 x+1$ and $q(x)=3 x-1$ evaluate $(p(x), q(x))$.
8. Let $V=\mathbb{R}^{3}, v_{1}=(1,2,1), v_{2}=(1,1,1), v_{3}=(1,1,-1)$. Show that $S=\left\{v_{1}, v_{2}, v_{3}\right\}$ is a basis for \mathbb{R}^{3}.
9. Let $A=\left[\begin{array}{cccccc}1 & -2 & 2 & -1 & -1 & 2 \\ -1 & 2 & -1 & 0 & 0 & -1 \\ 2 & -4 & 3 & -1 & 0 & 5 \\ 3 & -6 & 4 & -1 & -3 & 4\end{array}\right]$ $R=\left[\begin{array}{cccccc}1 & -2 & 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & -1 & 0 & 3 \\ 0 & 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$.
(a) Find a basis for the row space of A, if possible.
(b) Find a basis for the column space of A, if possible.
(c) Find a basis β for the solution space of the system $A x=0$.
(d) Find the rank and nullity of A.
(e) Determine whether or not $\gamma=(1,2,-3,1,3,-1)$ is a solution of the system $A x=0$.
